X-ray peak profile analysis of Sb

Tóm tắt

In the present work, nanostructured ZnO doped with (2, 4, 6, 8 and 10 ) is prepared by conventional solid state reaction method. X-ray diffraction peak intensities are sharp and narrow, confirming that the sample is of high quality with good crystallinity. The intensity and full width at half-maximum of x-ray diffraction peaks of (100) and (101) decreases with the increase of dopant in ZnO. X-ray peak profile analysis was used to evaluate the crystallite size and lattice strain by the Williamson-Hall (W-H) method. Using the models namely uniform deformation model (UDM), uniform stress deformation model (USDM) and uniform deformation energy density model (UDEDM) of W-H method, the physical parameters such as strain, stress, and energy density values were calculated. The surface morphology and elemental composition of the samples were characterized by scanning electron microscope and energy dispersive spectroscopy.

Tài liệu tham khảo

Rajesh Kumar B and Subba Rao T 2013 Appl. Surf. Sci. 265 169
Kao T-H, Chen J-Y, Chiu C-H, Huang C-W and Wu W-W 2014 Appl. Phys. Lett. 104 111909
Wu J M, Fang C-W, Lee L-T, Yeh H-H, Lin Y-H, Yeh P-H, Tsai L-N and Lin L-J 2011 J. Electrochem. Soc. 158 K6
Wahl U, Correia J G, Mendonca T and Decoster S 2009 Appl. Phys. Lett. 94 261901
Wang F, Seo J-H, Bayerl D, Shi J, Mi H, Ma Z, Zhao D, Shuai Y, Zhou W and Wang X 2011 Nanotechnology 22 225602
Lamba R, Umar A, Mehta S K and Kansal S K 2015 Ceram. Int. 41 5429
Karunakaran C, Narayanan S and Gomathisankar P 2010 J. Hazard. Mater. 181 708
Rahman M M, Khan S B and Asiri A M 2014 PLoS One 9 e85036
Cullity B D and Stock S R 2001 Elements of X-Ray Diffraction (Englewood Cliffs, NJ: Prentice-Hall)
Rietveld H M 1967 Acta Crystallogr. 22 151
Balzar D and Ledbetter H J 1993 Appl. Crystallogr. 26 97
Warren B E and Averbach B L 1950 J. Appl. Phys. 21 595
Khorsand Zak A, Abd Majid W H, Abrishami M E and Yousefi R 2011 Solid State Sci. 13 251
Suryanarayana C and Norton M G 1998 X-Ray Diffraction: a Practical Approach (New York: Plenum)
Kim J, Kiumar T and Yamaguchi T 2005 J. Mater. Sci. 24 2581
Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92 155504
Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu J L 2005 Appl. Phys. Lett. 8 252102
Hymavathi B, Rajesh Kumar B and Subba Rao T 2014 Proc. Mater. Sci. 6 1668
Neogi S K, Chattopadhyay S, Banerjee A, Bandyopadhyay S, Sarkar A and Kumar R 2011 J. Phys.: Condens. Matter 23 205801
Kelsall R W, Hamley I W and Geoghegan M 2006 Nanoscale Science and Technology (New York: Wiley)
Singh P, Kaushal A and Kaur D 2009 J. Alloys Compd. 471 11
Senthilkumaara S, Rajendran S K, Banerjee S, Chini T K and Sengodan V 2008 Mater. Sci. Semicond. Process. 11 6
Lalithakumari N, Lakshmi Rangaiah S, Rajesh Kumar B and Hymavathi B 2017 Mater. Today Proc. 4 2920
Ullah H, Iqbal A, Zakria M and Mahmood A 2015 Prog. Nat. Sci. 25 131
Kim D H, Cho N G, Kim K S, Han S and Kim H G 2009 J. Electroceram. 22 82
Meddouri M, Hammiche L, Slimi O, Djouadi D and Chelouche A 2016 Mater. Sci.-Pol. 34 659
Barret C S and Massalki T B 1980 Structure of Metals: Crystallographic Methods, Principles and Data (New York: Oxford)
Aparna P U, Divya N K and Pradyumnan P P 2016 J. Mater. Sci. Chem. Eng. 4 79
Williamson G K and Hall W H 1953 Acta Metall. 1 22
Zhang J, Zhang Y, Xu K W and Ji V 2006 Solid State Commun. 139 87
Rajesh Kumar B and Hymavathi B 2017 J. Asian Ceram. Soc. 5 94
Mote V D, Purushotham Y and Dole B N 2012 J. Theor. Appl. Phys. 6 1
Nye J F 1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (New York: Oxford)