1. Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
2. Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
3. Department of Physics, University of South Florida, Tampa, FL 33620, USA
4. Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
Tóm tắt
Từ khoá
Tài liệu tham khảo
[2] O. Milkovič, M. Sopko, J. Gamcová, I. Škorvánek. Structure and magnetic properties of iron/iron-oxide nanoparticles prepared by precipitation from solid state solution. Acta Phy. Polonica Ser. A, 131 (2017), p. 747-749, 10.12693/APhysPolA.131.747
[3] L. Wang, J. Li, Z. Wang, L. Zhao, Q. Jiang. Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal. Dalton Trans., 42 (2013), p. 2572-2579, 10.1039/C2DT32245E
[4] S. Yamamuro, T. Tanaka. Exchange-coupled Fe/Fe3O4 magnetic nanocomposite powder prepared by eutectoid decomposition of FeO. J. Ceram. Soc. Japan, 126 (2019), p. 152-155, 10.2109/jcersj2.17237
[5] P. Brahma, S. Banerjee, D. Das, P.K. Mukhopadhyay, S. Chatterjee, A.K. Nigam, D. Chakravorty. Properties of nanocomposites of a-Fe and Fe3O4. J. Magn. Magn. Matter., 246 (2002), p. 162-168, 10.1016/S0304-8853(02)00044-6
[6] Q.K. Ong, X.M. Lin, A. Wei. The role of frozen spins in the exchange anisotropy of core–shell Fe@Fe3O4 nanoparticles. J. Phys. Chem. C, 115 (2011), p. 2665-2672, 10.1021/jp110716g
[7] B. Yang, X. Li, X. Yang, R. Yu. Chemical synthesis of Fe/Fe3O4 core-shell composites with enhanced soft magnetic performances. J. Magn. Magn Mater., 428 (2016), p. 6-11, 10.1016/j.jmmm.2016.12.006
[8] H.S. Kim, S.H. Baek, M.-W. Jang, Y.-K. Sun, C.S. Yoon. Fe-Fe3O4 composite electrode for Lithium secondary batteries. J. Electrochem. Soc., 159 (2012), p. A325-A329, 10.1149/2.083203jes
[9] F. Walz. The Verwey transition—a topical review. J. Phys.: Condens. Mater., 14 (2002), p. R285-R340, 10.1088/0953-8984/14/12/203
[10] G.F. Goya. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys., 94 (2003), p. 3520-3528, 10.1063/1.1599959
[11] A. Mitra, J. Mohapatra, S.S. Meena, C.V. Tomy, M. Aslam. Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles. J. Phys. Chem. C, 118 (2014), p. 19356-19362, 10.1021/jp501652e
[12] A. Banerjee, A.J. Pal. Track the bands: Verwey phase transition in single magnetite nanocrystals. J. Phys. Condens. Matter, 32 (2020), Article 055701, 10.1088/1361-648X/ab4d27
[13] G. Xiao, C.L. Chien. Temperature dependence of spontaneous magnetization of ultrafine Fe particles in Fe-SiO2 granular solids. J. Appl. Phys., 61 (1987), p. 3308-3310, 10.1063/1.338891
[14] S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas. Magnetic properties of ultrafine Iron particles. Phys. Rev. B, 45 (1992), p. 9778-9787, 10.1103/PhysRevB.45.9778
[15] D.K. Tung, D.H. Manh, P.T. Phong, L.T.H. Phong, N.V. Dai, D.N.H. Nam, N.X. Phuc. Structural and magnetic properties of mechanically alloyed Fe50Co50 nanoparticles. J. Alloys Compd., 640 (2015), p. 34-38, 10.1016/j.jallcom.2015.04.022
[16] P.V. Hendriksen, S. Linderoth, P.A. Lindgard. Magnetic properties of Heisenberg clusters. J. Phys. Condens. Matter, 5 (1993), p. 5675-5684, 10.1088/0953-8984/5/31/029
[17] K. Maaz, A. Mumtaz, S.K. Hasanain, M.F. Bertino. Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J. Magn. Magn Mater., 322 (2010), p. 2199-2202, 10.1016/j.jmmm.2010.02.010
[18] D.H. Manh, P.T. Phong, T.D. Thanh, D.N.H. Nam, L.V. Hong, N.X. Phuc. Size effects and interactions in La0.7Ca0.3MnO3 nanoparticles. J. Alloys Compd., 509 (2011), p. 1373-1377, 10.1016/j.jallcom.2010.10.104
[19] D.K. Tung, D.H. Manh, L.T.H. Phong, P.H. Nam, D.N.H. Nam, N.T.N. Anh, H.T.T. Nong, M.H. Phan, N.X. Phuc. Iron nanoparticles fabricated by high-energy ball milling for magnetic hyperthermia. J. Electron. Mater., 45 (2016), p. 2644-2650, 10.1007/s11664-016-4457-x
[20] H.E. Endres, H.D. Jander, W. Göttler. A test system for gas sensors. Sensor. Actuator. B, 23 (1995), p. 163-172, 10.1016/0925-4005(94)01272-J
[21] M.H. Phan, J. Alonso, H. Khurshid, P.L. Kelley, S. Chandra, K.S. Repa, Z. Nemati, R. Das, O. Iglesias, H. Srikanth. Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials, 6 (2018), p. 221, 10.3390/nano6110221
[22] P.T. Phong, V.T.K. Oanh, T.D. Lam, N.X. Phuc, L.D. Tung, Nguyen T.K. Thanh, D.H. Manh. Iron oxide nanoparticles: tunable size synthesis and analysis in terms of the core–shell structure and mixed coercive model. J. Electron. Mater., 46 (2017), p. 2533-2539, 10.1007/s11664-017-5337-8
[23] C. Greaves. A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3. J. Solid State Chem., 49 (1983), p. 325-333, 10.1016/S0022-4596(83)80010-3
[24] I.M. Obaidat, C. Nayek, K. Manna, G. Bhattacharjee, I.A. Al-Omar, A. Gismelseed. Investigating exchange bias and coercivity in Fe3O4–γ-Fe2O3 core–shell nanoparticles of fixed core diameter and variable shell thicknesses. Nanomaterials, 7 (2017), p. 415, 10.3390/nano7120415
[25] N.N. Song, H.T. Yang, X. Ren, Z.A. Li, Y. Luo, J. Shen, W. Dai, X.Q. Zhang, Z.H. Cheng. Non-monotonic size change of monodisperse Fe3O4 nanoparticles in the scale-up synthesis. Nanoscale, 5 (2013), p. 2804-2810, 10.1039/C3NR33950E
[26] K.C. Chin, G.L. Chong, C.K. Poh, L.H. Van, C.H. Sow, J. Lin, A.T.S. Wee. Large-scale synthesis of Fe3O4 nanosheets at low temperature. J. Phys. Chem. C, 111 (2007), p. 9136-9141, 10.1021/jp070873g
[27] X. Sun, N.F. Huls, A. Sigdel, S. Sun. Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett., 12 (2012), p. 246-251, 10.1021/nl2034514
[28] B.D. Cullity, C. D Graham. Introduction to Magnetic Materials. second ed., John Wiley & Suns, New Jersey (2009)
[29] H. Khurshid, P. Lampen-Kelley, O. Iglesias, J. Alonso, M.H. Phan, M. L Saboungie, Chengjun Sun, H. Srikanth. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles. Sci. Rep., 5 (2015), p. 15054
[30] R. Das, J. Alonso, Z.N. Porshokouh, V. Kalappattil, D. Torres, M.H. Phan, E. Garaio, J.A. Garcia, J.L.S. Llamazares, H. Srikanth. Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C, 120 (2016), p. 10086-10093, 10.1021/acs.jpcc.6b02006
[31] I.M. Obaidat, C. Nayek, K. Manna. Investigating the role of shell thickness and field cooling on saturation magnetization and its temperature dependence in Fe3O4/γ-Fe2O3 core/shell nanoparticles. Appl. Sci., 7 (2017), p. 1269
[32] P. Hajra, S. Basu, S. Dutta, P. Brahma, D. Chakravorty. Exchange bias in ferrimagnetic–antiferromagnetic nanocomposite produced by mechanical attrition. J. Magn. Magn Mater., 321 (2009), p. 2269-2275