Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method

Tóm tắt

In this paper we present a modified polyol method for synthesizing magnetite nanoparticles using iron (III) nitrate, a low toxic and cheap precursor salt. The influence of the precursor salt nature and initial ferric concentration in the average particle size and magnetic properties of the obtained nanoparticles were investigated. Magnetite nanoparticles have received much attention due to the multiple uses in the biomedical field; for these purposes nanoparticles with monodisperse size distribution, superparamagnetic behavior and a combination between small average size and high saturation magnetization are required. The polyol conventional method allows synthesizing water-dispersible magnetite nanoparticles with these features employing iron (III) acetylacetonate as precursor salt. Although the particle sizes of samples synthesized from the conventional polyol method (denoted CM) are larger than those of samples synthesized from the modified method (denoted MM), they display similar saturation magnetization. The differences in the nanoparticles average sizes of samples CM and samples MM were explained though the known nanoparticle formation mechanism.

Từ khoá

Superparamagnetic magnetite, thermal decomposition, polyol method, magnetite nanoparticle

Tài liệu tham khảo

[1] Brigger I, Dubernet C and Couvreur P 2012 Adv. Drug Deliv. Rev. 64 24
[2] Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R and Hubalek J 2010 Pharmacol. Res. 62 144
[3] Fan T, Li M, Wu X, Li M and Wu Y 2011 Colloids Surf. B Biointerfaces 88 593
[4] Felton C, Karmakar A, Gartia Y, Ramidi P, Biris A S and Ghosh A 2014 Drug Metab. Rev. 46 142
[5] Kakar S, Batra D, Singh R and Nautiyal U 2013 J. Acute Dis. 2 1
[6] Reddy L H, Arias J L, Nicolas J and Couvreur P 2012 Chem. Rev. 112 5818
[7] Tu Z, Zhang B, Yang G, Wang M, Zhao F, Sheng D and Wang J 2013 Colloids Surf. A Physicochem. Eng. Asp. 436 854
[8] Zhang L, Dong W F and Sun H B 2013 Nanoscale 5 7664
[9] Anbarasu M, Anandan M, Chinnasamy E, Gopinath V and Balamurugan K 2015 Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 135 536
[10] Wang Y, Nkurikiyimfura I and Pan Z 2014 Chem. Eng. Commun. 202 616
[11] Keerthana D S, Namratha K, Byrappa K and Yathirajan H S 2015 J. Magn. Magn. Mater. 378 551
[12] Shen K, Wang J, Li Y, Wang Y and Li Y 2013 Mater. Res. Bull. 48 4655
[13] Wang J, Zhang B, Wang L, Wang M and Gao F 2015 Mater. Sci. Eng. C Mater. Biol. Appl. 48 416
[14] Lu A H, Salabas E L and Schüth F 2007 Angew. Chem. Int. Ed. Engl. 46 1222
[15] Rockenberger J, Scher E C and Alivisatos A P 1999 J. Am. Chem. Soc. 121 11595
[16] Sun S and Zeng H 2002 J. Am. Chem. Soc. 124 8204
[17] Sultana S, Khan M R, Kumar M, Kumar S and Ali M 2013 J. Drug Target. 21 107
[18] Feldmann C 2003 Adv. Funct. Mater. 13 101
[19] Fievet F, Lagier J P, Blin B, Beaudoin B and Figlarz M 1989 Solid State Ion. 33 198
[20] Cai W and Wan J 2007 J. Colloid Interface Sci. 305 366
[21] Grabs I M, Bradtmöller C, Menzel D and Garnweitner G 2012 Cryst. Growth Des. 12 1469
[22] Jansch M, Stumpf P, Graf C, Rühl E and Müller R H 2012 Int. J. Pharm. 428 125
[23] Maity D, Kale S N, Kaul-Ghanekar R, Xue J M and Ding J 2009 J. Magn. Magn. Mater. 321 3093
[24] Miguel-Sancho N, Bomatí-Miguel O, Colom G, Salvador J P, Marco M P and Santamaría J 2011 Chem. Mater. 23 2795
[25] Miguel-Sancho N, Bomati-miguel O, Roca A G, Martinez G, Arruebo M and Santamaria J 2012 Ind. Eng. Chem. Res. 51 8348
[26] Günay M, Baykal A and Sözeri H 2012 J. Supercond. Nov. Magn. 25 2415
[27] Jiang P, Yang X, Xin Y, Qi Y, Ma X, Li Q and Zhang Z 2012 J. Mater. Sci. 48 2365
[28] Arndt D, Zielasek V, Dreher W and Bäumer M 2014 J. Colloid Interface Sci. 417 188
[29] Vega J, Picasso G, Avilés L and López A 2013 Rev. Soc. Quím. Peru 79 331
[30] Roca A G, Morales M P, O’Grady K and Serna C J 2006 Nanotechnology 17 2783
[31] Vandenberghe R E, Nedkov I, Merodiiska T and Slavov L 2006 Hyperfine Interact. 165 267
[32] Gupta A K and Gupta M 2005 Biomaterials 26 3995
[33] Mandel K, Hutter F, Gellermann C and Sextl G 2011 Colloid. Surf. A Physicochem. Eng. Asp. 390 173
[34] Jia X, Chen D, Jiao X and Zhai S 2009 Chem. Commun. (Camb) 8 968
[35] Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, Xu Z, Shi D, Li J and Gao H 2005 J. Phys. Chem. B 109 23233
[36] Kwon S G and Hyeon T 2011 Small 7 2685
[37] Park J, Joo J, Kwon S G, Jang Y and Hyeon T 2007 Angew. Chem. Int. Ed. Engl. 46 4630
[38] Wan J, Cai W, Meng X and Liu E 2007 Chem. Commun. (Camb) 47 5004
[39] Caruntu D, Caruntu G and O’Connor C J 2007 J. Phys. D Appl. Phys. 40 5801
[40] Lin C R, Chiang R K, Wang J S and Sung T W 2006 J. Appl. Phys. 99 08N710
[41] Chen J P and Sorensen C M 1996 Phys. Rev. B 54 9288

Các bài trích dẫn đến

1. Marzieh Salimi, Saeed Sarkar, Samaneh Fathi, Ali Mohammad Alizadeh, Reza Saber, Fatemeh Moradi, Hamid Delavari. Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice in International journal of nanomedicine (Vol. 13, 2018)
2. L Avilés-Félix, E Monteblanco, A Gutarra. Optimization of a Vibrating Sample Magnetometer for a laboratory physics course in Revista TECNIA Vol26 (Vol. 2, 2016)
3. Lijun Pan, Bum Chul Park, Micheal Ledwig, Leon Abelmann, Young Keun Kim. Magnetic Particle Spectrometry of Fe 3 O 4 Multi-Granule Nanoclusters in IEEE transactions on magnetics (Vol. 53, No. 11, 2017)
5. Hassan M Asoufi, Tawfiq M Al-Antary, Akl M Awwad. Magnetite (Fe3O4) Nanoparticles Synthesis and Anti Green Peach Aphid Activity (Myzuspersicae Sulzer) in Journal of Chemistry (Vol. 6, No. 1, 2018)
6. Fatemeh Azadi, Ayoub Karimi-Jashni, Mohammad Mahdi Zerafat. Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment in Ecotoxicology and environmental safety (Vol. 165, 2018)
7. MR Fahlepy, VA Tiwow. Characterization of magnetite (Fe3O4) minerals from natural iron sand of Bonto Kanang Village Takalar for ink powder (toner) application in Journal of Physics: Conference Series (Vol. 997, No. 1, 2018)
8. Avilés Félix, Luis Steven, Elmer Nahuel Monteblanco, Abel Gutarra. Optimización de un magnetómetro de muestra vibrante para un curso de física de laboratorio (2016)