Cavity induced perfect absorption in metamaterials

Tóm tắt

We present novel resonant modes at the THz regime in a structure combining conventional metamaterial absorber (MA) with a cavity (MAC). The well-known structure consisting of three individual layers of periodic metallic dishes on the top, a dielectric layer in the middle, and a metallic film in the bottom is used, and the cavity is formed on the top layer by changing the geometry of the metallic dishes. MACs with various cavity parameters are designed and their absorption characteristics, such as magnetic field distribution, surface current, and power loss density at resonant frequencies of the designed structure, are numerically investigated. Resonant effects in this work may find applications in THz tunable and broadband MA, and our investigation on the dependence of the absorption frequency and absorption intensity on the geometric cavity of the designed structure will provide a general guideline for MAC design.

Từ khoá

Metamaterials absorber, metamaterials absorber with cavity, perfect absorption

Tài liệu tham khảo

[1] Smith D R, Padilla W J, Vier D C, Nemat-Naser S C and Shultz S 2000 Phys. Rev. Lett. 84 4184
[2] Veselago V G 1968 Sov. Phys. Usp. 105 509
[3] Pendry J B, Holden A J, Robbin D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[4] Yao K and Liu Y 2014 Nanotechnol. Rev. 3 177
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[8] Liu X, Tyler T, Starr T, Starr A, Jokerstan N M and Padilla W J 2011 Phys. Rev. Lett. 107 45901
[9] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[10] Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98
[11] Bienz E F 1979 US Patent 4142015
[12] Hendrickson J, Guo J, Zhang B, Buchwald W and Soref R 2012 Opt. Lett. 37 371
[13] Tuong P V, Park J W, Lam V D, Zheng H Y, Rhee J W, Kim K W and Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 015001
[14] Chen H T 2012 Opt. Express 20 7165
[15] Kaina N, Lemoult F, Fink M and Lerosey G 2013 Appl. Phys. Lett. 102 144104
[16] Lemoult F, Kaina N, Fink M and Lerosey G 2013 Nat. Phys. 9 55
[17] Pitchappa P, Ho C, Kropelnicki P, Singh N, Kwong D and Lee C 2014 J. Appl. Phys. 115 193109
[18] Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P and Lam V D 2014 Opt. Commun. 322 209
[19] Sorger V J, Oulton R F, Yao J, Bartal G and Zhang X 2009 Nano Lett. 9 3489
[20] Dung N V, Tung B S, Khuyen B X, Yoo Y J, Kim Y J, Rhee J Y, Lam V D and Lee Y P 2015 J. Phys. D: Appl. Phys. 48 375103
[21] Viet D T, Tung B S, Quynh L V, Hien N T, Tuan N T, Tung N T, Lee Y P and Lam V D 2012 Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 045014
[22] Lam V D, Tung N T, Cho M H, Park J W, Rhee J Y and Lee Y P 2009 J. Appl. Phys. 105 113102
[23] Tung N T, Lam V D, Cho M H, Park J W, Jang W H and Lee Y P 2009 Photon. Nanostruct: Fundam. Appl. 7 206
[24] Hien N T, Tung B S, Tuan N T, Tung N T, Lee Y P, An N M and Lam V D 2014 Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 025013
[25] Tung N T, Park J W, Lee Y P, Lam V D and Jang W H 2010 J. Korean Phys. Soc. 56 1291
[26] Pozar D 2012 Microwave Engineering 4th edn (New York: Wiley) p 284