Advances in graphene-based optoelectronics, plasmonics and photonics

Tóm tắt

Since the early works on graphene it has been remarked that graphene is a marvelous electronic material. Soon after its discovery, graphene was efficiently utilized in the fabrication of optoelectronic, plasmonic and photonic devices, including graphene-based Schottky junction solar cells. The present work is a review of the progress in the experimental research on graphene-based optoelectronics, plasmonics and photonics, with the emphasis on recent advances. The main graphene-based optoelectronic devices presented in this review are photodetectors and modulators. In the area of graphene-based plasmonics, a review of the plasmonic nanostructures enhancing or tuning graphene-light interaction, as well as of graphene plasmons is presented. In the area of graphene-based photonics, we report progress on fabrication of different types of graphene quantum dots as well as functionalized graphene and graphene oxide, the research on the photoluminescence and fluorescence of graphene nanostructures as well as on the energy exchange between graphene and semiconductor quantum dots. In particular, the promising achievements of research on graphene-based Schottky junction solar cells is presented.

Từ khoá

Graphene, graphene oxide, optoelectronics, plasmonics, photonics, solar cells

Tài liệu tham khảo

[1] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[2] Avouris P, Chen Z and Perebeinos V 2007 Nature Nanotechnol. 2 605
[3] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nature Nanotechnol. 3 1
[4] Rogers J A 2008 Nature Nanotechnol. 3 254
[5] Ryzhii V, Ryzhii M and Otsuji T 2008 Appl. Phys. Express 1 013001
[6] Ryzhii V, Ryzhii M, Satou A and Otsuji T 2008 J. Appl. Phys. 103 094510
[7] Ryzhii V, Ryzhii M, Satou A, Otsuji T and Kirova N 2009 J. Appl. Phys. 105 104510
[8] Ryzhii M, Satou A, Ryzhii V and Otsuji T 2008 J. Appl. Phys. 104 114505
[9] Ryzhii V, Ryzhii M, Satou A, Otsuji T and Mitin V 2011 J. Appl. Phys. 109 064508
[10] Liao L, Lin Y-C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y and Duan X 2010 Nature 467 305
[11] Lin Y-M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H-Y, Grill A and Avouris P 2010 Science 327 662
[12] Schwierz F 2010 Nature Nanotechnol. 5 487
[13] Xia F, Mueller T, Lin Y-M, Valdes-Garcia A and Avouris P 2009 Nature Nanotechnol. 4 839
[14] Mueller T, Xia F and Avouris P 2010 Nat. Photonics 4 297
[15] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[16] Wang X, Cheng Z, Xu K, Tsang H K and Xu J-B 2013 Nat. Photonics 7 888
[17] Posposchil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 Nat. Photonics 7 892
[18] Gan X, Shiue R-J, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S and Englund D 2013 Nat. Photonics 7 883
[19] Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 1749
[20] Liu N, Tian H, Schwartz G, Tok J-H, Ren T-L and Bao Z 2014 Nano Lett. 14 1702
[21] Lemone M C, Koppens F H, Falk A L, Rudner M S, Park H, Levitov L S and Marcus C M 2011 Nano Lett. 11 4134
[22] Youngblood N, Anugrah Y, Ma R, Koester S J and Li M 2014 Nano Lett. 14 2741
[23] Lee E J H, Balasubramanian K, Weitz R T, Burghard M and Kern K 2008 Nature Nanotechnol. 3 486
[24] Muller T, Xia F, Freitag M, Tsang J and Avouris P 2009 Phys. Rev. B 79 245430
[25] Park J, Ahn Y H and Ruiz-Vargas C 2009 Nano Lett. 9 1742
[26] Urich A, Unterrainer K and Mueller T 2011 Nano Lett. 11 2804
[27] Echtermeyer T J et al 2014 Nano Lett. 14 3733
[28] Li W et al 2014 Nano Lett. 14 955
[29] Liu M, Yin X and Zhang X 2012 Nano Lett. 12 1482
[30] Reed G T, Mashanovich G, Gardes F Y and Thomson D J 2010 Nat. Photonics 4 518
[31] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres NMR and Geim A K 2008 Science 320 1308
[32] Furchi M et al 2012 Nano Lett. 12 2773
[33] Koppens F H L, Chang D E and de Abajo F J G 2011 Nano Lett. 11 3370
[34] Yao Y, Kats M A, Shankar R, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 214
[35] Wagner M et al 2014 Nano Lett. 14 894
[36] Emani N K, Chung T F, Kildishev A V, Shalaev V M, Chen Y P and Boltasseva A 2014 Nano Lett. 14 78
[37] Yeung K Y M, Chee J, Yoon H, Song H, Kong J and Ham D 2014 Nano Lett. 14 2479
[38] Iyer G R S, Wang J, Wells G, Guruvenket S, Payne S, Bradley M and Borondics F 2014 ACS Nano 8 6353
[39] Bahk Y-M, Ramakrisnan G, Choi J, Song H, Choi G, Kim Y H, Ahn K J, Kim D-S and Planken P C M 2014 ACS Nano 8 9089
[40] Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R and Chand S 2011 J. Am. Chem. Soc. 133 9960
[41] Liu R, Wu D, Feng X and Muellen K 2011 J. Am. Chem. Soc. 133 15221
[42] Wu J S, Pisula W and Muellen K 2007 Chem. Rev. 107 718
[43] Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L and Qu L T 2012 J. Am. Chem. Soc. 134 15
[44] Li Y, Hu Y, Zhao Y, Shi G Q, Deng L E, Hon Y B and Qu L T 2011 Adv. Mater. 23 776
[45] Kwon W, Kim Y-H, Lee C-L, Lee M, Choi H C, Lee T-W and Rhee S-W 2014 Nano Lett. 14 1306
[46] Gupta A, Shaw B K and Saha S K 2014 J. Phys. Chem. C 118 6972

Các bài trích dẫn đến

1. Van Thanh Dang, Duc Dung Nguyen, Thi Thanh Cao, Phuoc Huu Le, Ngoc Minh Phan. Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films in Advances in Natural Sciences: Nanoscience and Nanotechnology (Vol. 7, No. 3, 2016)
2. Salma Nigar, Zhongfu Zhou, Hao Wang, Muhammad Imtiaz. Modulating the electronic and magnetic properties of graphene in RSC Advances (Vol. 7, No. 81, 2017)
3. Moses Richter, Thomas Heumüller, Gebhard J Matt, Wolfgang Heiss, Christoph J Brabec. Carbon photodetectors: the versatility of carbon allotropes in Advanced Energy Materials (Vol. 7, No. 10, 2017)
4. Xiaohuan Zhao, E Jiaqiang, Gang Wu, Yuanwang Deng, Dandan Han, Bin Zhang, Zhiqing Zhang. A review of studies using graphenes in energy conversion, energy storage and heat transfer development in Energy conversion and management (Vol. 184, 2019)
5. Jin Li, Li-Chun Xu, Yongzhen Yang, Xuguang Liu, Zhi Yang. The transport and optoelectronic properties of γ-graphyne-based molecular magnetic tunnel junctions in Carbon (Vol. 132, 2018)
7. Yiwen Sun, Shengxin Yang, Pengju Du, Fei Yan, Junle Qu, Zexuan Zhu, Jian Zuo, Cunlin Zhang. Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy in Optics express (Vol. 25, No. 3, 2017)
8. Thi Thanh Cao, Hai Binh Nguyen, Hung Thang Bui, Thi Thu Vu, Ngoc Hong Phan, Bach Thang Phan, Le Hoang, Maxime Bayle, Matthieu Paillet, Jean Louis Sauvajol. Fabrication of few-layer graphene film based field effect transistor and its application for trace-detection of herbicide atrazine in Advances in Natural Sciences: Nanoscience and Nanotechnology (Vol. 7, No. 3, 2016)
9. Xue Han, Kun Liu, Changsen Sun. Plasmonics for Biosensing in Materials (Vol. 12, No. 9, 2019)
10. Diana Aznakayeva. Graphene-Based Active Plasmonic Metamaterials (2018)
11. Baljinder Kaur, Anuj K Sharma. Plasmonic Biosensor in NIR with Chalcogenide Glass Material: On the Role of Probe Geometry, Wavelength, and 2D Material in Sensing and Imaging (Vol. 19, No. 1, 2018)
13. Ruiyun Zhou, Chen Wang, Wendao Xu, Lijuan Xie. Biological applications of terahertz technology based on nanomaterials and nanostructures in Nanoscale (Vol. 11, No. 8, 2019)
14. Microfiber-based Saturable Absorber Incorporating, Pulse Generation. Ng Eng Khoon (2017)
15. Somayeh Gholami Rudi, Rahim Faez, Mohammad Kazem Moravvej-Farshi, Kamyar Saghafi. Effect of Stone-Wales defect on an armchair graphene nanoribbon-based photodetector in Superlattices and Microstructures (2019)