Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin–orbit coupling

Tóm tắt

Spin-based electronics or 'spintronics' has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta–Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin–orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin–orbit coupling and a strong e–e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer.

Từ khoá

SpinFET, spintronics, quantum point contact, lateral spin–orbit coupling, conductance anomaly

Tài liệu tham khảo

[1] Kato Y Y, Myers R C, Gossard A C and Awschlom D D 2004 Science 306 1910
[2] Kato Y Y, Myers R C, Gossard A C and Awschlom D D 2004 Nature 427 50–3
[3] Kato Y Y, Myers R C, Gossard A C and Awschlom D D 2004 Phys. Rev. Lett. 93 176601
[4] Awaschalom D and Samarth N 2009 Physics 2 50
[5] Datta S and Das P 1990 Appl. Phys. Lett. 56 665
[6] Debald C and Emary S 2006 Phys. Rev. Lett. 97 240501
[7] Flindt C, Sorensen A S and Flensberg K 2006 Phys. Rev. Lett. 97 240501
[8] Cahay M and Bandyopadhyay S 2003 Phys. Rev. B 68 115316
[9] Cahay M and Bandyopadhyay S 2004 Phys. Rev. B 69 45303
[10] Schmidt G, Ferrand D, Molenkmp L W, Filip A T and van Wees B J 2000 Phys. Rev. B 62 R4790
[11] Okamoto K and Hattori H 2006 Phys. Rev. B 74 155321
[12] Xing Y, Sun Q-F, Tang L and Hu J 2006 Phys. Rev. B 74 155313
[13] Jiang Y and Hu L 2006 Phys. Rev. B 74 155313
[14] Debray P, Rahman S, Newrock R S, Cahay M, Ngo A, Ulloa A T, Herbert S E and Muhammad M 2009 Nature Nano Technol. 4 759
[15] Das P P, Chetry K, Bhandari N, Wan J, Cahay M, Newrock R S and Herbert S T 2011 Appl. Phys. Lett. 99 122105
[16] Das P P, Bhandari N, Wan J, Charles J, Cahay M, Chetry K B, Newrock R S and Herbert S T 2012 Nanotechnology 23 215201
[17] Bhandari N, Das P P, Cahay M, Newrock R S and Herbert S T 2012 Appl. Phys. Lett. 101 10241
[18] van Wees B J, van Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, van der Marel D and Foxon C T 1988 Phys. Rev. Lett. 60 848
[19] Wharam D J et al 1988 J. Phys. C. Solid. State Phys. 21 L209
[20] Das P P 2012 Generation of spin polarization in side-gated InAs quantum point contact PhD Thesis Engineering and
Applied Science: Electrical Engineering, University of Cincinnati, USA
[21] Wan J, Cahay M, Debray P and Newrock R S 2009 Phys. Rev. B 80 155440
[22] Bandyopadhyay S and Cahay M 2008 Introduction to Spintronics 1st edn (London: Taylor and Francis)
[23] Bychkov Y A and Rashba E I 1984 J. Phys. C: Solid State Phys. 17 6039
[24] Stormer H L, Schlesinger Z, Chang A, Tsui D C, Gossard A C and Wiegmann W 1983 Phys. Rev. Lett. 51 126
[25] Schapers T, Engels G, Lange J, Klocke T, Hollfelder M and ¨ Luth H 1998 J. Appl. Phys. 83 4324
[26] Dresselhaus G 1955 Phys. Rev. 100 580
[27] Elliot P G 1954 Phys. Rev. 96 266
[28] Yafet Y 1963 Solid State Physics vol 13 ed F Seitz and D Turnbull (New York: Academic)
[29] D’Yakonov M I and Kachorovski V Y Yu 1986 Sov. Phys. Semicond. 20 110
[30] Kiselev A A and Kim K W 2000 Phys. Rev. B 61 13115
[31] Kettermann S 2007 Phys. Rev. Lett. 98 176808
[32] Kaneko T, Koshino M and Ando T 2008 Phys. Rev. B 78 245302
[33] Kunihashi Y, Kohd M and Nitta J 2009 Phys. Rev. Lett. 102 226601
[34] van Houten H, Beenakker C W J and van Wees B J 1992 Semiconductors and Semimetals ed M A Reed (New York: Academic) p. 35–112
[35] Hew W K, Thomas K J, Pepper M, Farrar I, Anderson D, Jones G A C and Richie D A 2008 Phys. Rev. Lett. 101 36801
[36] Crook R, Prance J, Thomas K J, Chorley S J, Farrar I, Richie D A, Pepper M and Smith C G 2006 Science 312 1359
[37] Reilly D J, Buehler T M, O’Brian J M, Hamilton A R, Dzurak A S, Clark R G, Kane B E, Pfieffer L N and West K W 2002
Phys. Rev. Lett. 89 246801
[38] Kim S, Hashimoto Y, Iye Y and Katsumoto K 2011 arXiv:1102.4648v1
[39] Wesstrom J-O J, Hieke K, Stalnacke B, Palm T and Stolz B 1997 Appl. Phys. Lett. 70 1302
[40] Kane B E, Facer G R, Dzurak A S, Lumpkin N E, Clark R G, Pfieffer L N and West K W 1998 Appl. Phys. Lett. 72 3506
[41] Chen T-M, Graham A C, Pepper M, Farrar I and Ritchie D A 2008 Appl. Phys. Lett. 93 32102
[42] Kristensen A et al 2000 Phys. Rev. B 62 10950
[43] Berggren K-F and Pepper M 2010 Phils. Trans. R. Soc. A 368 1141
[44] Rokhinson L P, Pfieffer L N and West K 2006 Phys. Rev. Lett. 96 156602
[45] Jaksch P, Yakimenko Y and Berggren K-F 2006 Phys. Rev. B 74 235320
[46] Thomas K J, Nicholls C J, Simmons M Y, Pepper M, Mace D R and Ritchie D A 1996 Phys. Rev. Lett. 77 135
[47] Cortes-Huerto R and Ballone P 2010 J. Phys. Condens. Matter 22 295302
[48] Shailos A, Shok A, Bird J P, Akis R, Ferry D K, Goodnik S M, Lilly M P, Reno J L and Simmons J A 2006 J. Phys.: Condens. Matter. 18 1715
[49] Chen J C, Lin Y, Lin K T, Ueda T and Komiyama S 2009 Appl. Phys. Lett. 94 012105
[50] Liu K M, Juang C H, Umanski V and Hsu S Y 2010 J. Phys.: Condens. Matter. 22 295303
[51] Lusakowski A, Wrobel J and Dietl T 2003 Phys. Rev. B 68 81201
[52] Laux S E et al 1988 Surf. Sci. 196 101
[53] Timp G 1992 Semiconductors and Semimetals vol 35 (New York: Academic)
[54] Wan J, Cahay M, Debray P and Newrock R S 2011 J. Nanoelectron. Optoelectron. 6 95
[55] D’Yakonov M I and Khaetskii A V 2008 Spin Physics in Semiconductors (Springer Series in Solid-State Sciences) vol 157 (Berlin: Springer) chapter 8
[56] Lassl A, Schlagheck P and Richter K 2007 Phys. Rev. B 75 045346
[57] Wan J, Cahay M, Debray P and Newrock R S 2011 Proc. IEEE Nano 2011 Meeting, (Portland, OR) pp 1395–8
[58] de Picciotto R, Pfieffer L N, Baldwin K W and West K W 2005 Phys. Rev. B 72 033319
[59] Chung Y, Jo S, Chang D-I, Lee H-J, Zaffalon M, Umanski V and Heiblum M 2007 Phys. Rev. B 76 035316
[60] Roche P, Segala J, Glattli D C, Nicholls J T, Pepper M, Graham A C, Thomas K J, Simmons M Y and Ritchie D A 2004 Phys. Rev. Lett. 93 116602

Các bài trích dẫn đến

1. Y Gul, SN Holmes, PJ Newton, DJP Ellis, C Morrison, M Pepper, CHW Barnes, M Myronov. Quantum ballistic transport in strained epitaxial germanium in Applied Physics Letters (Vol. 111, No. 23, 2017)
2. K Kolasiński, A Mreńca-Kolasińska, B Szafran. Transconductance and effective Landé factors for quantum point contacts: Spin-orbit coupling and interaction effects in Physical Review B (Vol. 93, No. 3, 2016)
3. DA Pokhabov, AG Pogosov, E Yu Zhdanov, AA Shevyrin, AK Bakarov, AA Shklyaev. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact in Applied Physics Letters (Vol. 112, No. 8, 2018)
5. Rouhollah Farghadan, Ali Sehat. Enhancement of Rashba spin–orbit coupling by electron–electron interaction in RSC Advances (Vol. 6, No. 82, 2016)
6. GV Wolf, Yu P Chuburin. Spin polarization and conductance of the laterally asymmetric quantum point contact in Physics Letters A (Vol. 378, 2014)
7. H Karlsson, II Yakimenko, Karl-Fredrik Berggren. Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires in Journal of Physics: Condensed Matter (Vol. 30, No. 21, 2018)
8. PP Das, A Jones, M Cahay, S Kalita, SS Mal, NS Sterin, TR Yadunath, M Advaitha, ST Herbert. Dependence of the 0.5×(2e2/h) conductance plateau on the aspect ratio of InAs quantum point contacts with in-plane side gates in Journal of Applied Physics (Vol. 121, No. 8, 2017)
10. Christoph Kastl, Markus Stallhofer, Dieter Schuh, Werner Wegscheider, Alexander W Holleitner. Optoelectronic transport through quantum Hall edge states in New Journal of Physics (Vol. 17, No. 2, 2015)
11. K Kolasiński, H Sellier, B Szafran. Spin-orbit coupling measurement by the scanning gate microscopy in arXiv preprint arXiv:1602.01653 (2016)
12. RA Niyazov, DN Aristov, V Yu Kachorovskii. Spin filtering by helical edge states of topological insulator in arXiv preprint arXiv:1904.12949 (2019)
13. Yu P Chuburin, GV Wolf. Spin polarization of the asymmetric quantum point contact and conductance anomalies in the case of resonances in Physica E: Low-dimensional Systems and Nanostructures (Vol. 73, 2015)
14. Mehdi Pakmehr, BD McCombe, Olivio Chiatti, SF Fischer, Ch Heyn, W Hansen. Characterization of High Mobility InAs/InGaAs/InAlAs Composite Channels by THz Magneto-Photoresponse Spectroscopy in International Journal of High Speed Electronics and Systems (Vol. 24, 2015)
15. K Kolasiński, Hermann Sellier, Bartlomiej Szafran. Extraction of the Rashba spin-orbit coupling constant from scanning gate microscopy conductance maps for quantum point contacts in Scientific reports (Vol. 7, No. 1, 2017)