Spin reorientation and giant dielectric response in multiferroic La1.5Sr0.5NiO4+δ

Tóm tắt

A multiferroic sample of La1.5Sr0.5NiO4+δ was prepared by conventional solid-state reaction. X-ray diffraction study revealed La1.5Sr0.5NiO4+δ exhibiting a single phase with a tetragonal structure (F4K2Ni-perovskite-type structure, and space group of I4/mmm). An iodometric titration method was used to determine non-stoichiometric oxygen concentrations (δ) in the La1.5Sr0.5NiO4+δ ceramic. We found δ = −0.017, which corresponds to a doping level of nh = x + 2δ = 0.466 (with x being Sr2+ content). The field-cooled (FC) magnetization curve indicated that there was a strong increase in spin ordering (SO) at temperature TSO ~ 100 K. Below TSR ~ 50 K, spins undergo a spin reorientation (SR) turning away from the stripe direction on cooling. Its dielectric constant ε (ω , T) = ε'(ω,T) − iε ''(ω,T) was estimated by basing on capacitance and conductance curves measured at different temperatures and frequencies. Dielectric relaxations of charge-ordered La1.5Sr0.5NiO4+δ ceramic were investigated in a broad temperature range. The giant dielectric constant (104–106) with a low dielectric loss of 10−2–10−1 was also found.

Từ khoá

Multiferroic La1.5Sr0.5NiO4, giant dielectric, spin ordering

Tài liệu tham khảo

[1] Homes C C, Vogt T, Shapiro S M, Wakimoto S and Ramirez A P 2001 Science 293 673
[2] Deng G, He Z and Muralt P 2009 J. Appl. Phys. 105 084106
[3] Raevski I P, Prosandeev S A, Bogatin A S, Malitskaya M A and Jastrabik L 2003 J. Appl. Phys. 93 4130
[4] Wang Z, Chen X M, Ni L and Liu X Q 2007 Appl. Phys. Lett. 90 022904
[5] Liu Y Y, Chen X M, Liu X Q and Li L 2007 Appl. Phys. Lett. 90 192905
[6] Rivas J, Rivas-Murias B, Fondado A, Mira J and Senaris-Rodriguez M A 2004 Appl. Phys. Lett. 85 6224
[7] Liu X Q, Wu S Y, Chen X M and Zhu H Y 2008 J. Appl. Phys. 104 054104
[8] Kajimoto R, Ishizaka K, Yoshizawa H and Tokura Y 2003 Phys. Rev. B 67 014511
[9] Tranquada J M, Sternleib B J, Axe J A, Mkaamura Y and Uchida S 1995 Nature 375 561
[10] Ishizaka K, Taguchi Y, Kajimoto R, Yoshizawa H and Tokura Y 2003 Phys. Rev. B 67 184418
[11] Zhu Y, Zheng J C, Wu L, Frenkel A I, Hanson J, Northrup P and Ku W 2007 Phys. Rev. Lett. 99 037602
[12] Ikeda N et al 2005 Nature 436 1136
[13] Freeman P G, Boothroyd A T, Prabhakaran D, Frost C D, Enderle M and Hiess A 2005 Phys. Rev. B 71 174412
[14] Woo H, Boothroyd A T, Nakajima K, Perring T G, Frost C D, Freeman P G, Prabhakaran D, Yamada K and Tranquada J M 2005 Phys. Rev. B 72 064437
[15] Freeman P G, Boothroyd A T and Prabhakaran D 2002 Phys. Rev. B 66 212405
[16] Freeman P G, Giblin S R and Prabhakaran D 2011 J. Supercond. Nov. Magn. 24 1149
[17] Wu G and Neumeier J J 2003 Phys. Rev. B 67 125116
[18] Freeman P G, Boothroyd A T and Prabhakaran D 2004 Phys. Rev. B 70 024413
[19] Giblin S R, Freeman P G, Hradil K, Prbhakaran D and Boothroyd A T 2008 Phys. Rev. B 78 184423
[20] Liu X Q, Wu S Y, Chen X M and Zhu H Y 2008 J. Appl. Phys. 104 054114
[21] Chen C H, Cheong S W and Cooper A S 1993 Phys. Rev. Lett. 71 2461
[22] Zhang L and Tang Z J 2004 Phys. Rev. B 70 174306