Metamaterial-based perfect absorber: polarization insensitivity and broadband

Tóm tắt

We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%.

Từ khoá

metamaterials, perfect metamaterial absorber, broadband metamaterial absorber

Tài liệu tham khảo

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509514
[2] Smith D R, Padilla W J, Vier D C, Nermat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[5] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[7] Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98–120
[8] Liu X, Tyler T, Starr T, Starr A, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[9] Chang Y C, Wang C M, Abbas M N, Shih M H and Tsai D P 2009 Opt. Express 17 13526
[10] Lai J J, Liang H F, Peng Z L, Yi X and Zhai X F 2011 J. Phys.: Conf. Ser. 276 012129
[11] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[12] Chan W L, Chen H T, Taylor A J, Brenner I, Cich M J and Mittleman D M 2009 Appl. Phys. Lett. 94 213511
[13] Bienz E F 1979 US Patent 4142015
[14] Singh P, Korolev K A, Afsar M N and Sonkusale S 2011 Appl. Phys. Lett. 99 264101
[15] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[16] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[17] Tuong P V, Lam V D, Park J W and Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 035009
[18] Tuong P V, Park J W, Lam V D, Zheng H Y, Rhee J Y, Kim K W and Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 015001
[19] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[20] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[21] Lin C H, Chern R L and Lin H Y 2011 Opt. Express 19 41
[22] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
[23] Ding F, Cui Y, Ge X, Jin Y and He S 2012 Appl. Phys. Lett. 100 103506
[24] Ye Y Q, Jin Y and He S 2010 J. Opt. Soc. Am. 27 498
[25] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D 43 225102
[26] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X and Wang X 2012 J. Appl. Phys. 111 044902
[27] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[28] Grant J, Ma Y, Saha S, Khalid A and Cumming D R 2011 Opt. Lett. 36 3476
[29] Zhou J, Economon E N, Koschny T and Soukoulis C M 2006 Opt. Lett. 31 36203622
[30] Viet D T, Tung B S, Quynh L V, Hien N T, Tuan N T,
Tung T T, Lee Y P and Lam V D 2012 Adv. Nat. Sci.:
Nanosci. Nanotechnol. 3 045014
[31] Park J W, Jin X R, Tuong P V, Rhee J Y, Kim K W,
Kim D and Lee Y P 2012 Phys. Status Solidi B 249 858

Các bài trích dẫn đến