Interaction of nanosilver particles with human lymphocyte cells

Tóm tắt

The damaging effects of nanoparticles were hypothesized to be the oxidative stress caused by the formation of reactive oxygen species and initiation of inflammatory reactions. In this context a study on the effects of nanosilver particles on the formation of reactive oxygen species in human lymphocyte culture was carried out. The obtained results showed that fluorescence intensity considerably increased after cells had interacted with nanosilver particles of varying concentrations, indicating the formation of reactive oxygen species and their accumulation in lymphocyte cells. Morphological study of the lymphocyte cells under the effects of nanosilver particles showed that the change in morphology depends on the concentration and size of nanosilver particles: for a size ≤20 nm the lymphocyte cell significantly shrank with pronounced differences in the morphological structure of the cell membrane, but for a size ≥200 nm no change was observed.

Từ khoá

nanosilver particle, lymphocyte, toxicity, oxidative stress

Tài liệu tham khảo

Sondi I and Salopek-Sondi B 2004 J. Colloid Interf. Sci. 275 177
Cheng D, Yang J and Zhao Y 2004 Chin. Med. Equip. J. 4 26
Sotiriou G A and Pratsinis S E 2011 Curr. Opin. Chem. Eng. 1 3
Sutherland W J, Clout M, Coté C M and Daszak P 2010 Trends Ecol. Evol. 25 1
Hussain S M, Hess K L, Gearhart J M, Geiss K T and Schlager J J 2005 Toxicol. In Vitro 19 975
Hussain S M, Javorina A K, Schrand A M, Duhart H M, Ali S F and Schlager J J 2006 Toxicol. Sci. 92 456
Kim S, Choi J E, Choi J H, Chung K H, Park K, Yi J H and Ryu D Y 2009 Toxicol. In Vitro 23 1076
Park S, Lee Y K, Jung M, Kim K H, Chung N, Ahn E K and Lim Y 2007 Inhal. Toxicol. 19 59
Braydish-Stolle L, Hussain S M, Shlager J J and Hofmann M C 2005 Toxicol. Sci. 88 412
Panyala N R, Pena-Mendez E M and Havel J 2008 J. Appl. Biomed. 6 117
Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I and Wiesner M R 2006 Nano Lett. 6 1794
Gopinath P, Gogoi S K, Chattopadhyay A and Gosh S S 2008 J. Nanotechnol. 19 075104
Borm P J and Kreyling W J 2004 J. Nanosci. Nanotechnol. 4 521
Seung-Heon S, Mi-Kyung Y and Hyung-Suk K 2007 Int. Immunopharmacol. 7 1813
Ahamed M, Al Salhi M S, Siddiqui M K J, Pinzani P, Santucci C, Mancini I, Simi L, Salvianti F and Pratesi N 2010 Clin. Chim. Acta. 411 1841
Asharani P V, Mun G L K, Hande M P and Valiyaveettil S 2009 Am. Chem. Soc. Nano 3 279
Greulich C, Kittler S, Epple M, Muhr G and Köller M 2009 Langenbeck's Arch. Surg. 394 495–502
Sur I, Altunbek M, Kahraman M and Culha M 2012 Nanotechnology 23 375102
Buu N Q, Chau N H, Dung T T N and Tien N G 2011 J. Exp. NanoSci. 6 409
LeBel C P, Ischiropoulos H and Bondy S C 1992 Chem. Res. Toxicol. 5 227

Các bài trích dẫn đến

1. Wafa I Abdel-Fattah, MM Eid, Sh I Abd El-Moez, E Mohamed, Ghareib W Ali. Synthesis of biogenic Ag@ Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions in Life sciences (Vol. 183, 2017)
2. Jabran Saleem, Liming Wang, Chunying Chen. Immunological effects of graphene family nanomaterials in NanoImpact (Vol. 5, 2017)
3. Magdalena Wenda, Regina Jeziórska, Maria Zielecka, Marek Panasiuk. Zastosowanie nanocząstek srebra do modyfikacji polimerów in Polimery (Vol. 61, No. 3, 2016)
5. 黄河, 刘颖, 谢黎明. 纳米银的血液相容性及作用机制研究进展 in 科学通报 (Vol. 60, No. 36, 2015)
6. Dongxiao Cui, Tingting Liang, Liqian Sun, Liqiang Meng, Congcong Yang, Liwei Wang, Taigang Liang, Qingshan Li. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis in Pharmaceutical biology (Vol. 56, No. 1, 2018)
7. Mingguan Yang, Chaobo Huang, Yibin Xue, Shuhua Li, Laifeng Lu, Changlu Wang. Biofumigation with volatile organic compounds from Streptomyces alboflavus TD‐1 and pure chemicals to control Aspergillus ochraceus in Annals of Applied Biology (Vol. 173, No. 3, 2018)